Uniform-precision neural network quantization has gained popularity since it simplifies densely packed arithmetic unit for high computing capability. However, it ignores heterogeneous sensitivity to the impact of quantization errors across the layers, resulting in sub-optimal inference accuracy. This work proposes a novel neural architecture search called neural channel expansion that adjusts the network structure to alleviate accuracy degradation from ultra-low uniform-precision quantization. The proposed method selectively expands channels for the quantization sensitive layers while satisfying hardware constraints (e.g., FLOPs, PARAMs). Based on in-depth analysis and experiments, we demonstrate that the proposed method can adapt several popular networks channels to achieve superior 2-bit quantization accuracy on CIFAR10 and ImageNet. In particular, we achieve the best-to-date Top-1/Top-5 accuracy for 2-bit ResNet50 with smaller FLOPs and the parameter size.
translated by 谷歌翻译
For small training set sizes $P$, the generalization error of wide neural networks is well-approximated by the error of an infinite width neural network (NN), either in the kernel or mean-field/feature-learning regime. However, after a critical sample size $P^*$, we empirically find the finite-width network generalization becomes worse than that of the infinite width network. In this work, we empirically study the transition from infinite-width behavior to this variance limited regime as a function of sample size $P$ and network width $N$. We find that finite-size effects can become relevant for very small dataset sizes on the order of $P^* \sim \sqrt{N}$ for polynomial regression with ReLU networks. We discuss the source of these effects using an argument based on the variance of the NN's final neural tangent kernel (NTK). This transition can be pushed to larger $P$ by enhancing feature learning or by ensemble averaging the networks. We find that the learning curve for regression with the final NTK is an accurate approximation of the NN learning curve. Using this, we provide a toy model which also exhibits $P^* \sim \sqrt{N}$ scaling and has $P$-dependent benefits from feature learning.
translated by 谷歌翻译
We propose a sparse end-to-end multi-person pose regression framework, termed QueryPose, which can directly predict multi-person keypoint sequences from the input image. The existing end-to-end methods rely on dense representations to preserve the spatial detail and structure for precise keypoint localization. However, the dense paradigm introduces complex and redundant post-processes during inference. In our framework, each human instance is encoded by several learnable spatial-aware part-level queries associated with an instance-level query. First, we propose the Spatial Part Embedding Generation Module (SPEGM) that considers the local spatial attention mechanism to generate several spatial-sensitive part embeddings, which contain spatial details and structural information for enhancing the part-level queries. Second, we introduce the Selective Iteration Module (SIM) to adaptively update the sparse part-level queries via the generated spatial-sensitive part embeddings stage-by-stage. Based on the two proposed modules, the part-level queries are able to fully encode the spatial details and structural information for precise keypoint regression. With the bipartite matching, QueryPose avoids the hand-designed post-processes and surpasses the existing dense end-to-end methods with 73.6 AP on MS COCO mini-val set and 72.7 AP on CrowdPose test set. Code is available at https://github.com/buptxyb666/QueryPose.
translated by 谷歌翻译
The Shapley value (SV) is adopted in various scenarios in machine learning (ML), including data valuation, agent valuation, and feature attribution, as it satisfies their fairness requirements. However, as exact SVs are infeasible to compute in practice, SV estimates are approximated instead. This approximation step raises an important question: do the SV estimates preserve the fairness guarantees of exact SVs? We observe that the fairness guarantees of exact SVs are too restrictive for SV estimates. Thus, we generalise Shapley fairness to probably approximate Shapley fairness and propose fidelity score, a metric to measure the variation of SV estimates, that determines how probable the fairness guarantees hold. Our last theoretical contribution is a novel greedy active estimation (GAE) algorithm that will maximise the lowest fidelity score and achieve a better fairness guarantee than the de facto Monte-Carlo estimation. We empirically verify GAE outperforms several existing methods in guaranteeing fairness while remaining competitive in estimation accuracy in various ML scenarios using real-world datasets.
translated by 谷歌翻译
Process mining is a methodology for the derivation and analysis of process models based on the event log. When process mining is employed to analyze business processes, the process discovery step, the conformance checking step, and the enhancements step are repeated. If a user wants to analyze a process from multiple perspectives (such as activity perspectives, originator perspectives, and time perspectives), the above procedure, inconveniently, has to be repeated over and over again. Although past studies involving process mining have applied detailed stepwise methodologies, no attempt has been made to incorporate and optimize multi-perspective process mining procedures. This paper contributes to developing a solution approach to this problem. First, we propose an automatic discovery framework of a multi-perspective process model based on deep Q-Learning. Our Dual Experience Replay with Experience Distribution (DERED) approach can automatically perform process model discovery steps, conformance check steps, and enhancements steps. Second, we propose a new method that further optimizes the experience replay (ER) method, one of the key algorithms of deep Q-learning, to improve the learning performance of reinforcement learning agents. Finally, we validate our approach using six real-world event datasets collected in port logistics, steel manufacturing, finance, IT, and government administration. We show that our DERED approach can provide users with multi-perspective, high-quality process models that can be employed more conveniently for multi-perspective process mining.
translated by 谷歌翻译
The time-series forecasting (TSF) problem is a traditional problem in the field of artificial intelligence. Models such as Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), and GRU (Gate Recurrent Units) have contributed to improving the predictive accuracy of TSF. Furthermore, model structures have been proposed to combine time-series decomposition methods, such as seasonal-trend decomposition using Loess (STL) to ensure improved predictive accuracy. However, because this approach is learned in an independent model for each component, it cannot learn the relationships between time-series components. In this study, we propose a new neural architecture called a correlation recurrent unit (CRU) that can perform time series decomposition within a neural cell and learn correlations (autocorrelation and correlation) between each decomposition component. The proposed neural architecture was evaluated through comparative experiments with previous studies using five univariate time-series datasets and four multivariate time-series data. The results showed that long- and short-term predictive performance was improved by more than 10%. The experimental results show that the proposed CRU is an excellent method for TSF problems compared to other neural architectures.
translated by 谷歌翻译
Embodied Instruction Following (EIF) studies how mobile manipulator robots should be controlled to accomplish long-horizon tasks specified by natural language instructions. While most research on EIF are conducted in simulators, the ultimate goal of the field is to deploy the agents in real life. As such, it is important to minimize the data cost required for training an agent, to help the transition from sim to real. However, many studies only focus on the performance and overlook the data cost -- modules that require separate training on extra data are often introduced without a consideration on deployability. In this work, we propose FILM++ which extends the existing work FILM with modifications that do not require extra data. While all data-driven modules are kept constant, FILM++ more than doubles FILM's performance. Furthermore, we propose Prompter, which replaces FILM++'s semantic search module with language model prompting. Unlike FILM++'s implementation that requires training on extra sets of data, no training is needed for our prompting based implementation while achieving better or at least comparable performance. Prompter achieves 42.64% and 45.72% on the ALFRED benchmark with high-level instructions only and with step-by-step instructions, respectively, outperforming the previous state of the art by 6.57% and 10.31%.
translated by 谷歌翻译
Self-supervised pre-training of a speech foundation model, followed by supervised fine-tuning, has shown impressive quality improvements on automatic speech recognition (ASR) tasks. Fine-tuning separate foundation models for many downstream tasks are expensive since the foundation model is usually very big. Parameter-efficient fine-tuning methods (e.g. adapter, sparse update methods) offer an alternative paradigm where a small set of parameters are updated to adapt the foundation model to new tasks. However, these methods still suffer from a high computational memory cost and slow training speed because they require backpropagation through the entire neural network at each step. In the paper, we analyze the performance of features at different layers of a foundation model on the speech recognition task and propose a novel hierarchical feature fusion method for resource-efficient transfer learning from speech foundation models. Experimental results show that the proposed method can achieve better performance on speech recognition task than existing algorithms with fewer number of trainable parameters, less computational memory cost and faster training speed. After combining with Adapters at all layers, the proposed method can achieve the same performance as fine-tuning the whole model with $97\%$ fewer trainable encoder parameters and $53\%$ faster training speed.
translated by 谷歌翻译
要了解深层relu网络的动态,我们通过将其分解为级级$ w(t)$ and Angle $ \ phi(t):= \ pi- \ theta,研究了梯度流量$ W(t)$的动态系统(t)$组件。特别是,对于具有球形对称数据分布和平方损耗函数的多层单晶元神经元,我们为大小和角度成分提供上限和下限,以描述梯度流动的动力学。使用获得的边界,我们得出结论,小规模初始化会导致深单重质神经元的缓慢收敛速度。最后,通过利用梯度流和梯度下降的关系,我们将结果扩展到梯度下降方法。所有理论结果均通过实验验证。
translated by 谷歌翻译
隐式模型是一种普通学习模型,它放弃了神经网络中典型的层次结构结构,而是基于``平衡''方程来定义内部状态,从而提供竞争性能和减少记忆消耗。但是,培训这些模型通常依赖于昂贵的隐性区分来向后传播。在这项工作中,我们提出了一种新的培训隐式模型的方法,称为国家驱动的隐式建模(SIM),在其中,我们限制了内部状态和输出以匹配基线模型的模型,从而规避了昂贵的落后计算。训练问题通过构造变为凸,由于其可分解的结构,可以平行解决。我们演示了如何应用SIM卡方法来显着提高稀疏性(参数降低)和在FashionMnist和CIFAR-100数据集中训练的基线模型的鲁棒性。
translated by 谷歌翻译